top of page

Треугольник Паскаля

треугольник паскаля.png

«Треугольник Паскаля так прост, что выписать его сможет даже десятилетний ребенок. В то же время он таит в себе неисчерпаемые сокровища и связывает воедино различные аспекты математики, не имеющие на первый взгляд между собой ничего общего. Столь необычные свойства позволяют считать треугольник Паскаля одной из наиболее изящных схем во всей математике»
Мартин Гарднер

Треугольник Паскаля  — бесконечная таблица биномиальных коэффициентов, имеющая треугольную форму. В этом треугольнике на вершине и по бокам стоят единицы. Каждое число равно сумме двух расположенных над ним чисел. Строки треугольника симметричны относительно вертикальной оси. Назван в честь Блеза Паскаля. Числа, составляющие треугольник Паскаля, возникают естественным образом в алгебрекомбинаторикетеории вероятностейматематическом анализетеории чисел.

Свойства треугольника Паскаля

Каждое число равно сумме двух расположенных над ним чисел. Треугольник можно продолжать неограниченно.

Первая диагональ треугольника Паскаля – это натуральные числа, идущие по порядку.

Вдоль второй диагонали треугольника выстроены треугольные числа (Треугольное число — это число кружков, которые могут быть расставлены в форме правильного треугольника. Очевидно, с чисто арифметической точки зрения, n-е треугольное число — это сумма n первых натуральных чисел) и их обобщения на случай пространств всех размерностей.

Третья диагональ треугольника Паскаля - это «пирамидальные» числа или, более точно, тетраэдральные числа, показывающие сколько шаров может быть уложено в виде треугольной пирамиды (тетраэдра).

Паскаль, наверное, не знал, что числа Фибоначчи скрыты в его треугольнике. Это обстоятельство было обнаружено только в XIX веке — элементы числовой последовательности 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, … в которой каждое последующее число равно сумме двух предыдущих чисел). Красным цветом выделены числа Фибоначчи. Сумма чисел n-й диагонали есть n-е число Фибоначчи.

Сумма чисел, стоящих на четных местах, равна сумме чисел, стоящих на нечетных местах.

Сумма чисел, стоящих в любой строке треугольника, вдвое больше суммы чисел, стоящей в предыдущей строке, поскольку при построении каждой строки числа, стоящие в предыдущей, сносятся дважды.

Сумма чисел первой (самой верхней) строки равна 1. Следовательно, суммы чисел, стоящих в строках треугольника Паскаля, образуют геометрическую прогрессию с первым членом, равным 1, и знаменателем 2: 1, 2, 4, 8, ...

Каждое число в таблице, будучи уменьшенным на единицу, равно сумме всех чисел, заполняющих пространство, ограниченный теми диагоналям, на пересечении которых стоит это число.

Каждое число треугольника Паскаля равно сумме предыдущей диагонали, стоящей над этим числом.

Если номер строки треугольника Паскаля – простое число, то все числа этой строки, кроме 1, делятся на это число.

Числа, стоящие на горизонтальных строках треугольника Паскаля, - это биномиальные коэффициенты, то есть коэффициенты разложения n (a+b) по степеням.

Рассмотрим треугольники, построение которых связано с известными однопараметрическими комбинаторными числами. Создание таких треугольников основано на принципе построения рассматриваемого выше треугольника Паскаля.

1 фото: Треугольник Фибоначчи

2 фото: Треугольник Люка

3 фото: Треугольник Трибонначи

4 фото: "Знаковый треугольник"

bottom of page